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FOREWORD

This interim revort was prepared by Magnetic Corporation of America,
179 Bear Hil1l Road, Waltham, Massachusetts under United States Air Force

Contract Mo. F33615-77-C-3117 and covers vork performed from March, 1978,
through September, 1978.

The Principal Investigator for the program 1s Or. Z. J. J. Stekly.

The Program Manager is Dr. Robert D. Pillsbury, Jr. Other key contributors
to this pr‘ogram are: B e ad -

Mr. Alan R. Beckwith
Mr. Bjorn 0. Pedersen
Mr. Samuel Mushnick
Mr. Michael G. Rose

Included in %he report, is an interim report covering the work per-

formed by General Dynamics Convair Division, San Diego, California in support

of Magnetic Corporation of America for the period April, 1978, through September,
; 1978.
The Program Manager at Convair is Mr, R. Doug Holmes. Other key contri-
{ R
' butors are:
' Mr. Des. Vaughan, Design
Mr. Bruce Boston, Stress Analysis
Mr. Rod Hidde, Manufacturing
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SECTION 1
INTRODUCTION AND SUMMARY |
Magnetic Corporation of America (MCA) is under contract to the
Urited States Air Force Systems Command, Wright-Patterson Air Force Base, X
Ohio, to develop a lightweight, supe:conducting, magnetohydrodynamic (MHD)
magnet system. The total program is a forty-eight (48) month, six (6) phase

effort. The phases are:

Phase I - Model Magnet Criteria Selection

Phase IT - Model Magnet Design

Phase 111 - Model Magnet Fabrication and Test

Phase IV - Cryogenic Containment Fabrication

Phase V - Lightweight Model Magnet Design

Phase VI - Lightweight Model Magnet Fabrication and Test

This interim report presents the results of the Phase I efforts to
establish the criteria for modeling a superconducting MHD magnet system
capable of generating 30 Mde. The system characteristics for such a system
are illustrated in Table 1. The axial magnetic field profile requirements
for this system and for the model magnet are illustrated in Figure 1.

The criteria established during Phase I are used to select the scale
for a model MHD magnet system. The scale is chosen such that an experimental
demonstration of the model will represent a complete test of all critical
design features of the full scale (30 MWe) system.

Figure 2 and 3 illustrate the basic magnet system configuration., Figure 2
shows a cutaway view with the major components indicated. Figure 3 shows a
quarter section of the system at the magnet midplane. The winding is in the
form of a segmented annular saddlie with round end turn crossovers,

The winding segments or bundles are separated by structural teeth. These

teeth are used to pick up the circumferential Lorentz body forces from the




TABLE 1

MHD TAPERED SADDLE MAGNET DESIGN
TYPICAL OF A 30 Mwe GENERATOR

T

e

Py e e s

Oimensions

Dewar
Inlet Warm Bore Dia. (m) 0.29
Flange Dia. at Inlet (m) 0.305
Qutlet Warm Bore Dia. (m) 0.53
Intet Outside Dia. (m) 0.74
Outlet Outside Dia. (m) 1.10
Length Overall (m) 2.20

Magnet
Inner Dia. at Inlet (m) 0.35
Inner Dia. at Outlet (m) 0.59
Winding Build (m) 0.034
Length Between End Turns (m) 1.20
Length Overall (m) 1.57

Magnetic Characteristics (Unshielded)
Field at Inlet (t) 4.0
Field at Outlet (T) 2.75
Length of Field (m) 1.05
Peak Field (T) 5.6
Transverse Variation (%)

Across MHD Channel 5.0

Stored Energy (10° J) 2.50
Inductance (H) 1.24
Current (A) 2,000
Overall Current Density (108 A/n?) 1.5
Ampere-Meters (106 A-m) 9.86
Number of Turns 1,164
Ampere-Tuens (108 A-T) 2.33
Length of Conductnr (m) 4,930
Total Heat Load
Boiloff of Liquid Helium {1/hr) €.5
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Figure 1. Magnetic Field on Axis of MHD Magnet as Specified in Contract
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3. T e o e

bundles and transmit them to the cold bore tube and the outer helium vessel.
These tubes carry the loads to the plane of symmetry between magnet halves
where they are equilibrated by the loads from the quadrant’'s mirror image.
The circumferential load is large compared to the total loads on a cross-
section and, hence, the structural teeth are necessary to prevent the con-
ductor from being crushed. The radial loads are contained by a series of
external rings as shown. Axial loads are carried by the cold bore and helium
tubes. The primary structural material was chosen to be aluminum.

In order to establish the effects of scale on the critical system para-
meters, four magnet sizes were carried through a preliminary design during
Phase 1. The four sizes chosen for this study are based on inlet warm bore
diameters of 20, 29, 40, and 50 cm. The 29 cm design corresponds to the one
characterized in Table 1.

Two conductor current densities were used for each magnet size. An in-
crease in current density will have the effect of decreasing the overall
system weight. However, there is a concomitant increase in the risk of and
permanent damage due to a magnet quench. The nominal conductor current densi-
ties used for Phase 1 were 15,900 and 30,000 A/cm’.

Preliminary system characteristics were determined for each of the four
magnet sizes for each conductor current density. These characteristics are
listed in Tables 2 and 3. Table 2 corresponds to a 15,000 A/cm2 conductor;
Table 3 to a 30,000 A/cm2 conductor. The total system weight for each current
density is plotted versus magnet size in Figure 4. It can be seen that by
doubling the current density a weight reduction of one-third is possible.

The basic conductor configuration chosen for the magnet is a 97 strand,
partially solder-filled braid. The strand is copper stabilized muyltifila-~

mentary niobium titanium. Table 4 1ists the primary characteristics of the
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SYSTEM CHARACTERISTICS FOR FOUR BORE SIZES

TABLE 2

(15,000 A/ cm2 Conductor)

Dewar Dimensions 20 cm
Inlet warm bore dia. {m) 0.20
Outlet warm bore dia. (m) 0.36
Inlet outside dia. (m) 0.72
Qutlet outside dia. (m) 0.88
Length overall (m) 1.58

Magnet Dimensions
Inner dia. at inlet (m) 0.28
Inner dia. at outlet (m) 0.58
Winding build (m) 0.129

Characteristics
Ampere turns (106A-T) 2.49

" Number of turns 1276
Length of conductor (m) 3959
Total Weight (kg) 1150

7

29 cm 40 cm
0.29 0.40
0.53 0.64
0.88 1.08
1.12 1.32
1.80 1.97
0.40 0.52
0.70 0.82
0.160 0.1
3.32 4.16
1740 2088
6235 8367
1811 2506

50 ¢m

0.50
0.74
1.26
1.50
2.13

0.64
0.96
0.182

4.92
2406
10680
3457

b
T Ao Pttt 455 m




TABLE 2 !

SYSTEM CHARACTERISTICS FOR FOUR BORE SIZES
(30,000 A/cmé Conductor) !

Design
Dewar Dimension 20 cm 29 cm 40 cm 50 cm '
Inlet warm bore dia. (i) 0.20 0.29 0.40 0.50
| Outlet warm bore dia. (m) 0.36 0.53 0.64 0.74
| Inlet outside dia. (m) 0.67 0.84 1.02 1.16
|
j Qutlet outside dia. (m) 0.83 1.08 1.26 1.40
{
: Length overall (m) 1.57 1.77 1.94 2.09
‘ Magnet Dimensions
Inner dia. at inlet (m) 0.28 0.40 0.52 0.64
Inner dia. at outlet (m) 0.58 0.70 0.82 0.96
{ Winding build (m) 0.101 0.141 0.143 0.134
|
Characteristics
Ampere turns (106A-T) 2.28 3.19 3.96 4.58
; Number of turns 1187 1680 2000 2259
Length of conductor (m) 3607 5898 7846 9721
' Total Weight (kg) 747 1270 1777 2388
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TABLE 4
CONDUCTOR SPECIFICATIONS

. - ? - 2
Jeond 15 kA/cm jcond 30 kA/cm
Strand Configuration
Diameter, mm 0.4064 0.3048
CuSC ratio 5.0:1 3.0:1
Number of filaments 138 207
Filament diameter (um) 14.1 10.6
Guaranteed Performance
Critical Current at 3T, A 60 51
Critical Current at 4T, A 48 41
Critical Current at 57, A 40 34
Critical Current at 6T, A 32 27
Braid Configuration
Number of strands 97 97
Width, mm 0.847 0.635
Thickness, mm 21.84 16.38
Insulation thickness, mm 0.127 0.127
Operating current, Iop' A 2000 2000
Critical Current, 1., A 3420 2900
Iop/IC 0.58 0.69
10
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two braids. Since they have the same number of strands the desired current
densities are obtained by varying the strand diameters. The braid configura-
tion is one that has been used successfully by Brookhaven National Labora-
tories for the Isabelle magnets and, hence, represent a conductor with estab-
lished performance and manufacturability.

Each braid will be spiral-wrapped with .127 mm B-stage epoxy-glass
insulation. The combination of the spiral wrap insulation (with 50% surface
area coverage) and the braid intersticial passages yield a 25% local helium
volume which greatly enhances the conductor thermal stability. After the
magnet is wound, it is cured so that the insulation will act to rigidize the
winding bundles. The overall effect from the stability standpoint is that of
a partially impregnated or potted winding with advantages of both open-cooled
and fully potted designs.

The stability of the conductor can be defined as its ability to
retain or to recover to its superconducting state if perturbed by a local
heat input. Conductor stability is the most critical item to be addres-
sed in the design of a lightweight, superconducting magnet. If a lightweight
system was not required, sufficient copper stabilizer could be added to the
conductor to minimize the possibility of an induced guench. Similarly, a wind-
ing protection scheme could be included to reduce the possibility of permanent
damage if a quench did occur. Damage could occur during a quench due to either
a high peak temperature in the winding caused by the resistive heating in the
copper or a high resistive potential from one conductor to the next.

Figures 5 and 6 show the effect of magnet size and conductor current
density on the maximum temperature rise and peak voltage that occur during a
quench assuming no external protection system. As can be seen in Fiqure 5,
peak temperatures less than 450 K occur for bore sizes less than 35 cm and

a current density of 15,000 A/cmz. Most solders will melt at temperatures on

11
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the order of 450 - 500 K. Therefore, quench temperature rises must be
held below this range. It should be noted that the 30,000 A/crn2 current
density yields peak temperatures well above this limit for all magnet sizes.
If a higher current density is sought then some quench protection scheme is t
necessary. The peak voltages in the coil are well within reasonable limits
for the insulation. The maximum turn-tc-turn voltage is on the order of .
10-15 V.
The most probable cause of a quench is associated with a conductor
motion or s1ip relative to the structure, insulation, or another conductor.
The frictional energy released during the slip can be large enough to raise
the temperature of the conductor in the neighborhood of the slip above the
critical value and, thereby, drive the conductor normal. If there is suf-
ficient heating - both frictional and resistive - and insufficient cooling,
the normal region will propagate and the magnet will quench,
A major portion of the Phase I effort was concerned with determining an
allowabie conductor slip. The allowable slip was used to determine allowable
external structural deflections. Preliminary analysis indicate that if struc-
tural deflections are limited to .5 mm, the conductor and local helium will
be able to absorp the slip energy input without inducing a quench.
The remainder of this report will deal in detail with the major items
summarized a...e. That is, it will deal with magnet size, winding design, conductor
desian. structural design, conductor stability, and with system charge, discharge,
quench and quench protection. Finally, a concluding summary and list of
recommendations is included.
A report of the results of the work performed by General Dynamics, Convair
Division, in support of MCA is presented in the Appendix. The effort includes
the study of the effect on scale, risk, and cost of employing advanced com-

posite materials (ACM) for the structure.

14
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SECTION 11

MAGNET SIZE

In order to ascertain the effect of scale on the critical system para-
meters. and thereby establish the criteria to be used to select the model
magnet sfize, four magnet sizes were carried through a preliminary design
during Phase 1. The four sizes chosen are based on inlet warm bore tube
diameters of 20, 29, 40 and 50 cm. The 29 cm size corresponds to the full
scale (30 MWe) system. It was felt that the 20 cm size would represent a
minimum with respect to demonstrating the critical system behavior. The
40 and 50 cm sizes were considered in order to establish trends in the
neighborhood of the 29 cm size. Two conductor current densities - 15,000
and 30,000 A/cm 2 - were considered for each size.

Tables 5 and 6 1ist the major system characteristics for each magnet
size. Table 5 corresponds to the 15,000 A/cm2 conductor and Table 6 to the
30,000 A/cm2 conductor. The system stored energy is also plotted versus
magnet size in Figure 7. The stored energy is an important system para-
meter because during a quench the winding (plus external rocsistors, if pre-
sent) must be able to withstand the dissipation (through resistive heating)
of this amount of energy. It can be seen that by doubling the bore diameter
the system energy goes up by nearly a factor of four. Therefore, the risk
of damage to the winding during a quench is higher.

Figures 8, 9, and 10 are plots of conductor, structure, and system
weight versus bore size. The 29 cm design point is indicated on each figure
by an x. It can be seen that a majority of the weight savings that accrue
from an increased current density comes from the decreased conductor weight
(Figure 8). For example, doubling the current density for the 20 cm size

halves the conductor weight and reduces the total weight by one-third.

15
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TABLE 5

MAGNET CHARACTERISTICS FOR FOUR BORE SIZES

(15,000 A/crn2 Conductor)

Dimensions

Dewar
Inlet warm bore dia. (m)
Qutlet warm bore dia. (m)
Inlet outside dia. (m)
Outlet outside dia. (m)
Length overall (m)

Magnet
Inner dia. at inlet (m)
Inner dia. at outlet (m)
Winding build (m)

Electrical Characteristics

Design field at inlet (T)
Design field at outlet (T)
Design length uf field (m)
Total storeg energy (10%9)
Current ( 6

Ampere turns (10 A-T)
Number of turns

Length of conductor (m)
Inductance (H)

Weights

Conductor (kg)
Structure (kg)
Dewar (kg)
Total (kg)

Helium boiloff (1/hr)

16

Design
20 cm 29 cm 40 cm 50 cm
0.20 0.29 0.40 0.50
0.36 0.53 0.64 0.74
0.72 0.88 1.08 1.26
0.88 1.12 1.32 1.50
1.58 1.80 1.97 2.13
0.28 0.40 0.52 0.64
0.58 0.70 0.82 0.96
0.129 0.160 0.171 0.182
4.0 4.0 4.0 4.0
2.75 2.75 2.75 2.75
1.05 1.05 1.05 1.05
1.46 2.96 4.62 6.62
2.0 2.0 2.0 2.0
2.49 3.32 4.16 4.92
1276 1740 2088 2406
3959 6235 8367 10680
0.728 1.483 2.309 3.308
607 854 110 1429
229 419 624 915
N2 536 780 1113
1150 1811 2506 3457
6.8 7.1 7.4 7.7

a‘i
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TABLE 6

MAGNET CHARACTERISTICS FOR FOUR BORE SIZES

(30,000 A/cm2 Conductor)

Dimensions

Dewar

Inlet warm bore dia. (m)
Outlet warm bore dia. (m)
Inlet outside dia. (m)
Outlet outside dia. (m)
Length overall (m)

Magnet

Inner dia. at inlet (m)
Inner dia. at outlet (m)
Winding build (m)

Electrical Characteristics

- Current (10

Design field at inlet (T)
Design field at outlet (T)
Design length of field m;
Total storeg ﬁnergy (10°J
A

Ampere turns (106A-T)
Number of turns

Length of conductor (m)
Inductance (H)

Weights

Conductor (kg)
Structure (kg)
Dewar (kg)
Total (kg)

Helium boiloff (1/hr)

17

20 cm

.20
.36
.67
.83
.57

—O 000

.28
.58
101

[N e R ]

PN — =N >
NOSO\IO
=] [N

1187
0.649

285
200
261
747

6.6

29 cm 40 cm 50 cm
0.29 0.40 0.50
0.53 0.64 0.74
0.84 1.02 1.16
1.08 1.26 1.40
1.77 1.94 2.09
0.40 0.52 0.64
0.70 0.82 0.96
0.141 0.143 0.134
4.0 4.0 4.0
2.75 2.75 2.75
1.05 1.05 1.05
2.76 4.29 5.96
2.0 2.0 2.0
3.19 3.96 4.58
1680 2000 2259
5898 7846 9721
1.377 2.145 2.979
408 525 662
379 557 792
481 694 933
1270 1777 2388
7.0 7.2 7.9
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The structural weights change with current density primarily because
of the change in the winding build and, hence, in the inner structural diame-
ter. The Tocal magnetic body forces are proportional to the stored energy
density which is in turn proportional to the magnetic field squared. Since
the field requirements in terms of magnitude, length, etc., are held constant,
the local forces are relatively constant.

The forces produced by and acting on the windings were also calculated
for each size and for each current density. Figure 11 illustrates the types
of loading seen by the magnet and the directions. Figures 12 and 13 show
the variation of the force magnitudes as a function of bore size. Figure 12
shows the total axial (x-directed) load on the inlet end turn crossover. The
large increase in total force with increase in size is partly due to the
constant field length and constant current requirements. Thus, the warm
bore diameter increases, the required number of ampere-turns and, hence, the
winding build increases. This increase in build implies an increase in size
of the end turn crossovers. Since the distance between crossovers is relative-
1y constant due to the field length requirement and the ampere-turns increase,
the repulsion between the two increases.

Figure 13 illustrates the peak circumferential and radial forces per
unit length (measured along the straight sections) acting in a plane transverse
to the axis at the midplane. The peak loads do not occur at the same circum-
ferential position. The maximum radial force occurs near the centerline
between magnet halves. The maximum circumferential force on the other hand
occurs at the farthest circumferential position from this centerline. Perhaps
the most significant fact. shown by the figure is the order of magnitude
difference bhetween the two components. Since the circumferential loads are
roughly 90% of the total, some circumferential structure is needed to prevent

the conductors from being crushed.

22
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SECTION 111
WINDING DESIGN

The basic winding geometry adopted for the *HD magnet is that of an
annular saddle with round end turns. An annular shape was chosen over a
rectangular one on the basis of the information presented in Fiqure 14.

This figure shows the contours of constant relative winding effectiveness
superposed on an annular winding envelape for a transverse section. The
contours are numbered and indicate the relative effectiveness of a conductor
with respect to creating the central field. For example, a conductor located
on the .5-contour would only have 50% of the effect of a conducter located

on the 1.0-contour. It can be seen that the proposed envelope is effective.

The round end turn configuration is adopted in order to reduce the
overall system envelope. Other configurations, such as arched end turns, are
possible and would reduce the peak field magnitude at the winding, but the
conductor weight and system envelope would increase.

As was mentioned previously, four magnet sizes, each with two current
densities, were carried through a preliminary design. The first step in the
design sequence was to locate and size the winding in order to meet the system
field requirements. The axial field profile, magnitude, length, and inlet and
outlet gradient requirements are shown in Figure 15.

Initially a uniform distribution of current in winding envelope was
assumed. However, preliminary conductor stress analyses indicated the need
to provide internal structure to prevent the crushing of the conductor by thre
accumulated circumferential body forces. The basic annular saddle geometry
was modified to include structure within the winding. The result was a seg-
mented saddle with structural teeth between winding segments or bundles. For
the preliminary design, it was assumed that the bundles were evenly spaced

circumferentially and each contained the same number of conductors.
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Each bundle was then modeled by a lumped current filament placed
at the bundle center and composed of a number of straight sticks. Figure 16
shows a typical filament model of the magnet. The winding inner and outer
radii at the inlet and outlet, the length between end turn crossovers, the
number of bundles, and the total ampere-turns were then varied until the
design gave a satisfactory field profile. The thickness of the structural
tooth between bundles was checked to see if it was sufficient to carry the
bundle circumferential loads. If it wasn't, the process was repeated.

Table 7 summarizes the magnetic field data generated. The field profiles
for the 20, 29, 40, and 50 cm designs at 15,000 A/cm2 are shown in Figures 17
through 20. The profiles for the four designs at 30,000 A/cm2 are presented
in Figures 21 through 24.

As is seen in Table 7, the inlet field magnitude of 4 T (+ 5%) and the
active field length of 1.05 m requirements are met by all four designs. The
outlet field magnitude of 2.75 T (+ 5%) and inlet field gradient of 10 T/m
(-2.5%) can be met by the 20 and 29 cm designs. The larger sizes do not meet
the gradient conditions at either end or the outlet field magnitude. Even
the 20 and 29 cm sizes cannot meet the 10 T/m gradient condition at the outlet.

The outlet field magnitude and gradient conditions are difficult to meet

simultaneously. This is especially true for the large sizes since the end
turn crossovers are very wide in the axial direction and the field length

is constant with size. Figure 25 illustrates the effect of varying the magnet
taper on the axial field profile. The inlet inner radius, the winding build,
the number of bundles, and Lhe length between end turn crossovers

were held constant. The outlet inner radius (and, hence, the taper angle)

was then varied. The total ampere-turns was also changed in order to meet

the 4 T inlet field level. The required ampere-turns increased approximately

7% per 5° increment in taper angle.
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B Inlet (T)
B Outlet (T)
Field Length (m)

Cradient, Inlet (T/m)
Gradient, Outlet (T/m)

B Inlet (T)
B Outlet (T)
Field Length (m)

Gradient, Inlet (T/m)
Gradient, Outlet (T/m)

TABLE 7
MAGNETIC FIELD DATA
15,000 A/cm® Conductor

20 cm 29 cm 40 cm 50 cm
4.0 4.0 4.0 4.0
2.60 2.95 3.10 3.22
1.05 1.05 1.05 1.08

14.25 9.75 9.25 7.75
5.75 5.00 4,75 4.00

30,000 A/cm2 Conductor

20 cm 29 cm 40 cm 50 cm
4.0 3.975 3.95 4.0
2,60 2.80 3.00 3.125
1.05 1.05 1.05 1.05

17. 11.25 9.25 7.75
5.75 5.10 5.00 4,25
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It can be seen that as the taper increases, the outlet field level }
decreases. Therefore, the field requirement can be met by a judicious f
choice of taper angle. However, the outlet field gradient alsc decreases ]
with increasing taper, and therefore, the requirements are difficult to
meet simultaneously with the geometry chosen. The requirements probably
can be met by employiny one or more of the following more sophisticated
winding techniques:

1) Having early crossovers

2) Employing small racetract "trim" coils , ]

3) Compressing the winding envelope at the outlet back to the
inlet size*

The use of these techniques, however, requires a significant design and

fabrication effort.

The filament model discussed above was refined so that each winding
bundle was modeled by 4 filaments. This model was then used to calculate *
the magnetic field homogeneity in the MHD channel region. Three axial
positions were chosen for the calculations. These were the inlet, mid-plane
and outlet. Figures 26 through 49 illustrate the calculated field homogeneity
at the three locations for the four magnet sizes, each with two current
densities. These figures present the ratio of the y-component of field at
the point to the central field magnitude. The results are nut of the range
defined by the requirements - i.e., + 5% of the central field magnitude for
the outlet of all designs. The 20, 29, and 40 cm sizes have a maximum
variation of 7% for the outlet at the largest radii checked. The inlet and
midplane results for these three sizes are within the specified range. It
was assumed that the useful MHD channel bore would have 80% of the warm bore

radius. The 50 cm size did not make the 5% homogeneity at both the inlet and

the outlet.

*STnce the winding tapers the distance between bundles grows from inlet to
outlet. The outlet crossover therefore takc. more space than does the inlet

sover.
cros 41
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